Modified Lyapunov Equations for Lti Descriptor Systems

نویسنده

  • Peter C. Müller
چکیده

Abstract. For linear time-invariant (LTI) state space systems it is well-known that its asymptotic stability can be related to solution properties of the Lyapunov matrix equation according to so-called inertia theorems. The question now arises how analogous results can be obtained for LTI descriptor systems (singular systems, differential-algebraic equations). The stability behaviour of a LTI descriptor system is characterized by the eigenvalues of the related matrix pencil. Additionally, by a quadratic Lyapunov function the stability problem can be discussed by solution properties of a generalized Lyapunov matrix equation including a singular coefficient matrix. To overcome this difficult problem of singularity, the Lyapunov matrix equation will be modified such that a regular Lyapunov matrix equation appears and asymptotic stability is preserved. This aim can be reached by shifting the system matrices in a well defined manner. For that the a priori knowledge of an upper bound of the eigenvalues is assumed. It will be discussed how to get such bound. The paper ends with an inertia theorem where the solution properties of a regular modified Lyapunov matrix equation are uniquely related to the asymptotic stability of the LTI descriptor system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decentralized H2 Controller Design for Descriptor Systems: An LMI Approach

This paper considers a decentralized H2 control problem for multichannel linear time-invariant (LTI) descriptor systems. Our interest is to design a low order dynamic output feedback controller. The control problem is reduced to a feasibility problem of a bilinear matrix inequality (BMI) with respect to variables of a coefficient matrix defining the controller, a Lyapunov matrix and a matrix re...

متن کامل

A modified matrix sign function method for projected Lyapunov equations

In this paper we discuss the numerical solution of projected generalized Lyapunov equations using the matrix sign function method. Such equations arise in stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. It is known that the matrix sign function method applied to a matrix pencil λE−A converges if and only if λE−A is of index ...

متن کامل

A New Invariance Property of Lyapunov Characteristic Directions

Lyapunov exponents and direction elds are used to characterize the time-scales and geometry of general linear time-varying (LTV) systems of di erential equations. Lyapunov exponents are already known to correctly characterize the time-scales present in a general LTV system; they reduce to real parts of eigenvalues when computed for linear time-invariant(LTI) systems and real parts of Floquet ex...

متن کامل

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

A NEW LYAPUNOV EQUATION FOR DISCRETE - TIME DESCRIPTOR SYSTEMS ' Jog 0

For discrete-time descriptor syslems, various generalized Lyapunov equations were studied in the literature. Howevn these well known generalized Lyapunov equations can be used only under some restrictive assumptions on the plant (as system regularity, or positiveness of a Q matrix, for example). To overcome these limitations, we propose in this paper a new generalized Lyapunov equation for disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004